首页> 外文OA文献 >Lagrangian ADER-WENO Finite Volume Schemes on Unstructured Triangular Meshes Based On Genuinely Multidimensional HLL Riemann Solvers
【2h】

Lagrangian ADER-WENO Finite Volume Schemes on Unstructured Triangular Meshes Based On Genuinely Multidimensional HLL Riemann Solvers

机译:非结构三角形的拉格朗日aDER-WENO有限体积格式   基于真正多维HLL黎曼解算器的网格

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this paper we use the genuinely multidimensional HLL Riemann solversrecently developed by Balsara et al. to construct a new class ofcomputationally efficient high order Lagrangian ADER-WENO one-step ALE finitevolume schemes on unstructured triangular meshes. A nonlinear WENOreconstruction operator allows the algorithm to achieve high order of accuracyin space, while high order of accuracy in time is obtained by the use of anADER time-stepping technique based on a local space-time Galerkin predictor.The multidimensional HLL and HLLC Riemann solvers operate at each vertex of thegrid, considering the entire Voronoi neighborhood of each node and allows forlarger time steps than conventional one-dimensional Riemann solvers. Theresults produced by the multidimensional Riemann solver are then used twice inour one-step ALE algorithm: first, as a node solver that assigns a uniquevelocity vector to each vertex, in order to preserve the continuity of thecomputational mesh; second, as a building block for genuinely multidimensionalnumerical flux evaluation that allows the scheme to run with larger time stepscompared to conventional finite volume schemes that use classicalone-dimensional Riemann solvers in normal direction. A rezoning step may benecessary in order to overcome element overlapping or crossing-over. We applythe method presented in this article to two systems of hyperbolic conservationlaws, namely the Euler equations of compressible gas dynamics and the equationsof ideal classical magneto-hydrodynamics (MHD). Convergence studies up tofourth order of accuracy in space and time have been carried out. Severalnumerical test problems have been solved to validate the new approach.
机译:在本文中,我们使用Balsara等人最近开发的真正的多维HLL Riemann解算器。在非结构化三角网格上构造一类新的具有计算效率的高阶拉格朗日ADER-WENO单步ALE有限体积格式。非线性WENO重构算子使该算法可以在空间上实现高阶精度,而通过使用基于局部时空Galerkin预测器的ADER时间步长技术可以在时间上实现高阶精度。多维HLL和HLLC黎曼求解器考虑到每个节点的整个Voronoi邻域,在网格的每个顶点上操作,并且比传统的一维Riemann求解器允许更大的时间步长。多维Riemann求解器产生的结果然后在一步ALE算法中使用两次:首先,作为为每个顶点分配唯一速度矢量的节点求解器,以保持计算网格的连续性;第二,作为真正多维数值通量评估的基础,与常规有限体积方案在常规方向上使用经典一维Riemann求解器相比,该方案可以以较大的时间步长运行。为了克服元素重叠或交叉,可能需要重新分区步骤。我们将本文介绍的方法应用于两个双曲守恒律系统,即可压缩气体动力学的欧拉方程和理想经典磁流体力学(MHD)方程。已经进行了时空精度的四阶收敛研究。解决了几个数值测试问题,以验证新方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号